
Patterns	of	Communication	
Between	Objects

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	10.1

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Key	Points	for	this	Module

• Objects	can	communicate	in	two	basic	ways:	pull	
and	push.

• Objects	must	have	stable	identity	in	order	to	
communicate	reliably

• We	use	stateful objects	to	implement	objects	
with	stable	identity.

• Publish-subscribe	is	a	common	pattern	for	
implementing	push-style	communication

• Delegates	are	a	refinement	of	publish-subscribe.

2

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Module	10

3

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Divide	into	Cases

Call	a	more	
general	function

Communicate	
via	State

Recur	on	
subproblem

Key	Points	for	Lesson	10.1

• Sometimes	you	need	to	combine	data	from	two	
objects.			

• The	data	could	be	combined	in	3	possible	places:
– some	external	function	(typical	in	functional	
organization,	but	generally	considered	bad	OO	design)

– asking	the	other	object	to	give	you	its	data	("pull"	
model)

– sending	your	information	to	the	other	object,	and	
asking	it	to	do	the	computation	("push"	model)

4

Most	methods	have	an	obvious	home

• Most	of	the	time,	we	want	to	do	calculations	
in	the	object	where	the	data	is.

• If	you	need	to	compute	the	area	of	a	circle,	
make	that	a	method	of	the	Circle% class.

5

Sometimes	you	need	to	combine	
information	from	two	objects

• How	do	you	determine	if	two	balls	intersect?
• Let’s	look	at	three	designs.

6

Design	#1: Balls	as	just	data	structures
(define Ball0<%>

(interface ()
;; -> Integer
;; RETURN: x, y coords of center and radius, all in pixels
get-x
get-y
get-r))

(define Ball0%
(class* object% (Ball0<%>)

(init-field x y r)
; interpretation omitted...
(super-new)
(define/public (get-x) x)
(define/public (get-y) y)
(define/public (get-r) r)))

7

Design	#1:	Just	use	objects	in	place	of	
structs.		We	equip	our	objects	with	
methods	that	get	each	field,	and	do	
our	computation	outside	of	any	
object.

Here	is	the	interface	and	a	sample	
class	definition	in	this	style.

Implementation	of	first	design
;; Ball0<%> Ball0<%> -> Boolean
(define (intersects? b1 b2)
(coordinates-intersect?
(send b1 get-x) (send b1 get-y) (send b1 get-r)
(send b2 get-x) (send b2 get-y) (send b2 get-r)))

(define (coordinates-intersect? x1 y1 r1 x2 y2 r2)
(<=
(+ (sqr (- x1 x2)) (sqr (- y1 y2)))
(sqr (+ r1 r2))))

8

This	is	considered	poor	OO	
design:	 	we	are	just	using	
objects	as	structs!		We	want	
to	package	the	computation	
with	the	data.

Design	#2: Collaborate	by	pulling	
information	from	the	other	object

(define Ball-Pull<%>
(interface ()
;; -> Integer
;; RETURN: x, y coords of center and radius,
;; all in pixels
get-x
get-y
get-r

;; Ball1<%> -> Boolean
;; Does the given ball intersect with this one?
intersects?
))

9

In	our	second	design,	
we	add	a	method	
intersects?	to	the	
interface.	

(define Ball1%
(class* object% (Ball-Pull<%>)

(init-field x y r) ; interpretation omitted...
(super-new)
;; STRATEGY: Ask the other ball for its data
(define/public (intersects? other-b)
(coordinates-intersect?

(send other-b get-x)
(send other-b get-y)
(send other-b get-r)))

;; Integer^3 -> Boolean
;; GIVEN: the coordinates of some ball
;; RETURNS: would that ball intersect this one?
(define (coordinates-intersect? other-x other-y other-r)
(<= (+ (sqr (- x other-x)) (sqr (- y other-y)))

(sqr (+ r other-r))))

(define/public (get-x) x)
(define/public (get-y) y)
(define/public (get-r) r)

)) 10

Ask	the	other	ball	for	its	
information

Do	the	computation	here

Be	prepared	to	answer	if	
someone	asks	you	the	

same	questions!

Method	Definitions	for	Pull	Model

Pull	model:	what	happens

1. (send b1 intersects? b2)
2. b1 asks	b2 for	its	data.		b2 gives	it.
3. then	b1 does	the	arithmetic.

OK	if	x,	y,	r are	already	observable.		But	what	if		
they	are	not?

11

b1	is	the	object	that	
actually	does	the	
computation.

Design	#3.	Push	Model:	the	object	
pushes	its	data	to	the	other	object

(define Ball-Push<%>
(interface ()

;; Ball-Push<%> -> Boolean
;; does the given ball intersect this one?
intersects?

;; Integer^3 -> Boolean
;; GIVEN: the x,y,r of some ball
;; RETURNS: would that ball
;; intersect with this one?
intersect-responder
))

12

In	this	design,	when	
this	ball	is	asked	
whether	it	intersects	
with	some	other	ball,	
it	sends	its	
information	to	the	
other	ball,	and	asks	
that	ball	to	compute	
the	intersection.

So	now	we	have	two	methods

• intersects? sends	this	ball’s	data	to	the	other	
ball.

• intersect-responder responds	to	the	request,	
computing	whether	or	not	there	is	an	
intersection	between	the	two	balls.

13

Method	Definitions	for	push	model
;; A Ball2 is a (new Ball2% [x Integer][y Integer][r Integer])
(define Ball2%
(class* object% (Ball-Push<%>)
(init-field x y r) ; interpretation omitted...
(super-new)

(define/public (intersects? other-b)
(send other-b intersect-responder x y r))

;; Integer^3 -> Boolean
;; GIVEN: the coordinates of some ball
;; RETURNS: would that ball intersect this one?
(define/public

(intersect-responder other-x other-y other-r)
(<= (+ (sqr (- x other-x)) (sqr (- y other-y)))
(sqr (- r other-r))))

))

14

Send	your	data	to	the	
other	ball	and	ask	him	to	
finish	 the	computation

If	someone	asks	you	a	
question,	 be	prepared	to	

answer	it

Push	model:	what	happens

1. (send b1 intersects? b2)
2. b1	sends	its	data	to	b2
3. b2	answers	the	question.
This	is	sometimes	called	“double	dispatch”
b2	doesn’t	know	who’s	asking.

15

A	related	pattern	is	called	
“the	visitor	pattern.”		This	is	
a	variation	of	this	design	
when	one	of	the	structures	
is	itemization	data.		We	
don’t	have	time	in	this	
course	to	deal	with	the	
visitor	pattern,	but	you	
should	now	be	equipped	 to	
learn	about	it.

In	this	design,	b2 is	the	
ball	that	does	the	
geometric	calculation.

This	pattern	is	also	
sometimes	called	
“double	dispatch”.		It	
shows	up	often	in	
object-oriented	
programming.

Push	or	pull:	how	to	choose?

• Most	of	the	time	the	answer	is	clear:	most	
operations	naturally	act	on	a	particular	object.

• Operations	should	happen	in	the	object	where	
the	data	resides
– our	first	attempt	was	not	good	design

• Binary	operations	like	intersect?	are	relatively	
rare	in	practice
– either	design	2	or	design	3	would	be	ok	for	our	
purposes

16

Lesson	Summary

• Sometimes	you	need	to	combine	data	from	two	
objects.			

• The	data	could	be	combined	in	3	possible	places:
– some	external	function	(typical	in	functional	
organization,	but	generally	considered	bad	OO	design)

– asking	the	other	object	to	give	you	its	data	("pull"	
model)

– sending	your	information	to	the	other	object,	and	
asking	it	to	do	the	computation	("push"	model)

17

Next	Steps

• Study	10-1-communicating-objects.rkt	in	the	
Examples	folder

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Think	about	the	following	question:
– How	would	b1	know	about	b2?

• Go	on	to	the	next	lesson

18

